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On the Inverse of an Integral Operator

by
Peter Wolfe

We wish to consider the integral equation

4

: 1
(1) f(x) = 2 fl Hgl)(k]x-t])go(t)dt.

Here Hél) denotes the zero order Hankel function of the first kind.
k is a non-zero constant with Re k 2 O, Imk 2 0. Recall that for

small r we have

(2) %—Hél) (kr) = % log2 + n(r)
where h(r) and h'(r) are finite at r = 0. The equation (1) arises in
connection with the solution of the reduced wave equation in the plane
slit along the x-axis from -1 to +1 [1].

In [1] the following result was pr;oven: Iet h denote the class of
complex functions ¢ which are HSlder continuous in a neighborhood of

each point of (-1,1) and further satisfy the condition that near x =1

]9’(::)] = (1):x)“ » 0% a<1l andnear x = ;l, Jex)]| = (14);)‘1 .

Then given f(x) such that f' is H3lder continuous,equation (1) has a
unique solution, @ € h. In this paper we will consider equation (1)
as a mapping from one Hilbert space into another. We will show that if
the domain and range spaces are defined appropriately the integral opera-

tor in (1) becomes a one to one continuous mapping of one Hilbert space



onto another and hence by Banach's open mapping theorem has a continuous
inverse, It will be shown that if f is sufficiently smooth, the solu-
tions found here coincide with those found in [1].

1

2\~% 2% _ 1
Let p(t) = (1-1%) ®, -1<t<1 and q(t) = (1-1t°) =p(_t$’

-1 <t <1, We define three spaces:

1 —x
Le) = {z | fl e (1) et < =} ;
1 1
(@ = {rf £12(1-t)%at < = )
@ - {r1 [ el }
W;(q) = {f ] £ is absolutely continuous on [-1,1] and £' (which

exists a.e, with respect to Iebesgué measure) € I.z(q) } °

1
If in I.z(p) we define ]]f]]iz(p) = [ ]fIZ(l-tz)‘%dt and in LZ(Q)

2 1 i
we define [f] = [ ]f]z(l- t2)2dt then these spaces are
Hilbert spaces. In W;(q) we define

2 2 .
BfHw;’(q) Hfﬂnz(q) I "x.2<q>°

We then have:

3
Theorem 1. Under the above nom Wz(q) is a Hilbert space.

Proof. We first note that I.2(q) C Ll(—l,l) (the usual class of func-
tions integrable over (-1,1) with respect to Lebesgue measure) and the

injection is continuous‘t To see this we note

el = [-11 |£(t)|at = [1171%?. [£(t) | V1-t° at

<

"_1/—%—?_:"1,2(@ ufnLa(q) ] ﬁuf”Lz(q)




where we have used the Schwarsz inequality in I.2(q).
Now suppose { fn} is a Cauchy sequence in W;"(Q). In particular

1 N . t
{fn} is Cauchy in I.z(q). Thus 3 g e Lz(q) S ]]fn-g HLz(q)

' _ X
By the above f , g €L,(-1,1). Thus f_(x) = £ (-1) + [-1 £l(t)dt .

- 0,

X
Hence £, (-1) - £(-1) = £ (=) - £ (x) - /:1 (£1(t) - £1(t) ) at.

nA

Thus ]2, (-1) - £ (-1)|?

-

2] £ (x) - fm(x)]2 + 2 ]]fr'l - fl;ﬂf . Multiply

by 1-t~ and integrate from -1 to 1 .

gjfn(-l) =fm(—l)]2 = 2[]:? f ]]L( y * nﬂf - 11'1”;21 . Thus
e (-1 - £ (02 S Bpe HLZ@ s an gl - fn'lﬂiz(q) — 0

as myn —» e, Thus fn(-l)-s»C as n—> o, Iet

x
f(x) =¢C + f g(t)dt. f is absolutely continuous and
-1
x 1
O R A R CORENONE

J£(x) - fn(x)]2 = 2]c- fn(-l)]2 +2 Jg - f;lﬂi . Thus
E f(x) - f (X)uLg( ) - ﬂj C-f ('1)12 +am Hg f HLZ(q) —» 0
as n— o, Thus [ f - fﬂw%(q)——b 0 as n— =, 1

We now consider the operator defined by (1). Let

. 1
(3) v - 4 [P pwas - @p)e,



As is pointed out in [1] if P is Holder continuous we may differentiate

under the integral sign and obtain (in view of (2)) ¢

r
J.

o’

l*'/' (x) =

~~
j g
2=

1 1
M . Jf k(t,x) P(t)dt
Koo

1 -1

where the first term must be taken as a Cauchy Principal Value and in the
second term k(t,x) is a cc....nuous kernel,

We now consider (4) as an equation in Lz(q). Iet F: L2(q) — L2(p)

be defined by (Ff) (t) =/ 1=t2 f(t). Then F is an isometry of L2(q)

onto L2(p). Define an operator T by

1
(%) ¢g=%x£l et) . L 4.

N

Then we have the following theorem [2].

Theorem 2, The operator defined by (5) is a continuous mapping from Lz(p)
onto L,(q). Its null space is one dimensional and is spamned by the
function g(x) = 1. Further the restriction, Tys of T to the orthogonal
complement H(p) of this mull space is an isometry of H(p) onto I.2(q)
with inverse mapping

1
'r(‘)’lh %[ A /42 g,

=1 t-x )

1
Thus the mapping % / %—%dt can be written as TFP. We see
, =1 =

that it maps Lz(q) continuously onto Lz(q) with a one dimensional null
L -
space spanned by p(t) = (1-1:2) ® . We recall the definition of the in-

dex of an operator S from one linear space X 1o another linear space Y,



Suppose S has a finite dimensional null space N(S), dim N(S) = a(8),
and that the range of S, R(S), has finite codimension.

codim R(S) = dim Y/R(S) = B(S) (in which case S is said to be a
Fredholm operator). The integer i(S) = a(S) - B(S) is called the
index of the operator S. Thus we have that TF is a Fredholm operator
with «(TF) =1, B(TF) = 0. Thus i(TF) = 1. Since k(t,x) is con-

tinuous so that

[11/1 tf,x)<lt)\/lxdxdt<~

=1

=

1
[ k(tyx) $(t)dt represents a compact operator, Ky s from L2(q) in-

to I.Q(q). Now the operator TF admits a left regularization [3], i.e.

there exists a linear bounded operator Q mapping I.z(q) into L2(q) such
that

Q(TF) = I#K

where I is the identity in I‘Z(Q) and K is a compact operator (we take

=1n=1

Q=F T » Then K = =-PO ~ vwhere PO is the projection onto the space

spanned by P(t) = —2L __ . Ve then note:

1-t

Theorem 3 [3]. If a bounded ocperator A admits a left regularization

and has finite index and K 1is any compact operator we have
i(A+K) = i(A).
Hence we conclude that mapping defined by the right hand side of (L)

is a continuous mapping of Lz(q) into Lz(q) with index equal to 1.

We return now to the operator L defined by (3), We have

ke, it



A

1 1 ‘
f [ JH(()l)(kaat]) ]2(\/ lwtz)\/ l-x" dtdx < «, Thus L is a con-
-1 a1 .

tinuous (compact) operator from L2(q) into L2(q)°

Theorem L. The operator L maps L,(q) into W‘;(q).

Proof. Given @€ Lz(q) . lLet

V=19
X= w9+ k9.

Let {9:1} be a sequence of Hilder continuous functions 3
Hynm yﬂLZ(q) — Oo Iet L‘!bn = Il ?no

Then we know that ‘,Un is differentiable on (-1,1) and

' -
L'Un B TFSPn v KO 9pn °
By continuity of the mappings L and TF+ KO we see that { %} and
. (- . . .
{k//n} are Cauchy sequences in I.Z(q) i.e, {y/n} is a Cauchy sequence

in W;(q)o By Theorem 1 3 a SVO € W;(q) 3 ﬂl//n= (//O]]w’_(q) — 0,
2

Hence J]Sén-» (//OHLz(q) —> 0 but (/fn-—> ¥ in L2(q)o Thus

Y- ¢O a.e, In fact Y = l/’O since Y can easily be shown to be
continuous and (PO is absolutely continuous. Also X = 90(') a.e,
Hence the theorem is proven.

Theorem 5. The operator L is a one to one map of Lz(q) onto W;'(q).

Proof, let f ewg(q) and consider the equation in L2(q)



(6) £' = (TF # Ky) # .

We know that the index of (TF + KO) is 1. Thus ofTF #+ KO) Z1l. Let

?O € LE(O*) satisfy the equation
(7) TF ¢, * K, Py = O.

1
Recall that K, @, = [1 kK(t,x) () dt, k(t,x)=h'([t-x|)~ (t-x)log |t-x]|.

k(t,x) is HOlder continuous in x uniformly in t (see [L] p. 17). Thus

an easy argument shows that if ?o €L,(q), K,@, is HSlder continuous.,

Thus applying the operator leTS:L we see that

1 (K, ®.)(t)
Polx) = % = f —-O—-&)———\/ 1-t° dt +—-—C—2—

1-x =1 t-x , 1-t

AV

but from this we see that ?O € h, Hence all solutions of (7) in Lz(q)
are at the same time in h. Hence applying arguments as in [1] we see
that there exists exactly 1 linearly independent solution of (6) in Lz(q),
say @,. Further L¢O = CO where CO is a non zero constant., Thus

a(TF + KO) =1, B(TF + KO) =0, i.,e, TF + KO is onto., ILet ¢f be

a solution of (6), Then we consider the function f-1L Pp. This is a
function in Wy(q) with derivative ff ~(TF +K) P, = 0 ae., Thus

c

*
f=L§Pf = Cf where Gf is a definite constant, Thus ¢ = ¢f + % WO

satisfies L P* = f, The above argument shows that this solution is

unique., l

Theorem 6. L='1 is a continuous mapping from W%(q) onto I?(q)"

Proof. Apply Banach's open mapping theorem,



Finally we note that if f' is Holder continuous and % is the solu-
tion of L% = f we have (TF + K)}D = ' and applying the operator
F‘ngl as is the proof of Theorem 5 we again see that @€ h. Hence

the solutions found here coincide with those found in [1].
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